CCDC 2020
23-25 May

杰出讲座

非线性系统动态优化与控制

付俊 教授

东北大学,中国

Abstract

  报告首先将介绍一个全新的可以在有限多次迭代下能够保证精确满足路径约束的动态非凸优化的理论框架。其次介绍非线性动态系统的几个切换控制新方法,具体包括高阶标准型切换系统的有限时间镇定,时滞切换系统的周期采用控制以其事件驱动采样控制。然后通过利用系统的结构信息,针对非完整约束机械系统、具有时滞和死区的多输入多输出非线性系统以及含有快时变或跳变参数的非线性系统提出了新的构造性控制方法,最后对切换系统最优控制、闭环动态优化、以及混合智能优化控制的发展方向进行展望。

Biography

  付俊 ,1979年出生,东北大学教授、博导、国家杰出青年基金获得者。现任东北大学工业人工智能研究院副院长。2006年获东北大学控制理论与控制工程博士学位,2009年获加拿大康考迪亚(Concordia)大学机械与工程第二博士学位, 2010年-2014年为美国麻省理工学院(MIT)全职博士后研究员。
付俊教授主要从事动态优化、非线性控制、工业人工智能等方面的研究,在非凸动态优化、切换控制和构造性控制的基础理论及其在复杂工业过程中的应用方面取得了系统性的创新成果。荣获2016年中国自动化学会青年科学家奖,2018年教育部青年科学奖(为自控管理领域首位获奖者,该奖每年所有领域获奖者不超过10名)。主要学术兼职有:中国自动化学会副秘书长, IEEE Trans. Neural Networks and Learning Systems, IEEE Trans. on SMC: Systems, Control Engineering Practice, Journal of Industrial and Management Optimization、《自动化学报》中英文版和《系统工程学报》的编委。


Multiactuation Schemes and Information Constraints for Vibration Control of Large-Scale Systems.

Prof. Hamid Reza Karimi

Politecnico di Milano, Italy

Abstract

Vibration is a phenomenon that affects system performances such as robot manipulators, bridges, buildings, towers, vehicles and aircrafts. The protection of these large-scale systems against the harmful effects of vibration has become a major field of research in recent years. In the literature of vibration control of mechanical, electrical or hydraulical systems, different damping systems, mainly passive, active and semi-active damping systems or, recently, inerter devices, have been proposed and successfully applied to tackle the vibration problem. One critical characteristic common to most of these actuators is that they, in general, exhibit nonlinear dynamics and thus complex control techniques must be employed for an appropriate performance. The main objective of this talk is to present some challenges and recent results on distributed or decentralized passive and active vibrational control schemes with a focus on simplicity, reliability, applicability and robustness of controller developments under information constraints and multiactuation schemes. In particular, to enhance the system protection, some innovative devices for the purpose of vibration mitigation in buildings through efficient control techniques will be analyzed and an integration of actuator devices with different concepts of large structural systems will be analyzed separately. The talk will be concluded with some advices on both technical and practical aspects of vibration control systems using innovative actuation devices.

Biography

Hamid Reza Karimi received the B.Sc. (First Hons.) degree in power systems from the Sharif University of Technology, Tehran, Iran, in 1998, and the M.Sc. and Ph.D. (First Hons.) degrees in control systems engineering from the University of Tehran, Tehran, in 2001 and 2005, respectively. From 2009 to 2016 he was a full professor of Mechatronics and Control Systems at University of Agder in Norway. Since 2016, he has been a professor of Applied Mechanics with the Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy. His current research interests include robust control systems, vibration control, fault diagnosis and health monitoring for industrial applications.

Prof. Karimi is currently the Editor-in-Chief of the Journal of Cyber-Physical Systems, Editor-in-Chief of the Journal of Machines, Editor-in-Chief of the International Journal of Aerospace System Science and Engineering, Editor-in-Chief of the Journal of Designs, Section Editor-in-Chief of the Journal of Electronics, Section Editor-in-Chief of the Journal of Science Progress, Subject Editor for Journal of The Franklin Institute and a Technical Editor, Moderator for IEEE TechRxiv or Associate Editor for some international journals, such as the IEEE Transactions on Fuzzy Systems, the IEEE Transactions on Neural Networks and Learning Systems, the IEEE Transactions on Circuits and Systems-I: Regular Papers, the IEEE/ASME Transactions on Mechatronics, the IEEE Transactions on Systems, Man and Cybernetics: Systems, for instance. He is a member of Agder Academy of Science and Letters and also a member of the IEEE Technical Committee on Systems with Uncertainty, the Committee on Industrial Cyber-Physical Systems, the IFAC Technical Committee on Mechatronic Systems, the Committee on Robust Control, and the Committee on Automotive Control. Prof. Karimi awarded as the 2016-2019 Web of Science Highly Cited Researcher in Engineering.


Gradient-Free Distributed Optimization Methods for a Multi-Agent System with Unknown Cost Function.

胡国强 教授

南洋理工大学,新加坡

Abstract

This talk will present a randomized gradient-free distributed optimization algorithm to solve a multi-agent optimization problem with set constraints. Random gradient-free oracle instead of the true gradient information is built locally such that the estimated gradient information is utilized in guiding the update of decision variables. Thus, the algorithm requires no explicit expressions but only local measurements of the cost functions. The row-stochastic and column-stochastic matrices are used as the weighting matrices during the communication with neighbors, making the algorithm convenient to implement in directed graphs as compared with the doubly-stochastic weighting matrix. Without the true gradient information, we establish asymptotic convergence to the approximated optimal solution, where the optimality gap can be set arbitrarily small. Moreover, the proposed algorithm achieves the same rate of convergence O(ln t/sqrt(t)) as the state-of-the-art gradient-based methods with similar settings, but having the advantages of less required information and more practical communication topologies.

Biography

Guoqiang Hu joined the School of Electrical and Electronic Engineering at Nanyang Technological University, Singapore in 2011, and is currently a tenured Associate Professor and the Director of the Centre for System Intelligence and Efficiency. He received the B.Eng. degree in Automation from the University of Science and Technology of China, the M.Phil. degree in Automation and Computer-Aided Engineering from the Chinese University of Hong Kong, and the Ph.D. degree in Mechanical Engineering from the University of Florida. He works on distributed control, distributed optimization and game theory, with applications to multi-robot systems and smart city systems. He has published over 80 journal papers including 57 IEEE Transactions papers and 10 Automatica papers. He was a recipient of the Best Paper in Automation Award in the 14th IEEE International Conference on Information and Automation in 2017, a recipient of the Best Paper Award (Guan Zhao-Zhi Award) in the 36th Chinese Control Conference in 2017, and a recipient of the Early Career Teaching Excellence Award at Nanyang Technological University, Singapore, in 2015. He serves/served as Associate Editor for IEEE Transactions on Automatic Control, IEEE Transactions on Control Systems Technology, and IEEE Transactions on Automation Science and Engineering, Subject Editor for International Journal of Robust and Nonlinear Control, and Technical Editor for IEEE/ASME Transactions on Mechatronics.


Interesting Problems in Estimation and Control on Smart Road Vehicles.

Rajesh Rajamani 教授

University of Minnesota, 美国

Abstract

A number of exciting vehicle automation and active safety systems are being developed by research groups around the world. This talk focuses on novel sensors, estimation algorithms and control systems that can fill critical gaps in the automation technologies under development. The first part of the seminar describes the development of a smart bicycle with novel sensors to track trajectories of nearby vehicles on the road, and instrumentation to provide warnings to the motorist if a potential car-bicycle collision is detected. Significant challenges from sensor cost and size constraints for a bicycle, and from the need to track vehicles in highly complex urban road traffic are discussed. Experimental results and videos of the smart bicycle system’s performance are presented. The second part of the seminar discusses interesting observer design problems for nonlinear systems, including unknown input estimation, parameter estimation and a new combined high-gain-LMI method of observer design. The applications of these estimation algorithms for predicting and preventing tripped rollovers, and for a novel magnetic sensor based detection of imminent unavoidable car crashes are discussed. The final part of the seminar describes the development of a new class of narrow commuter vehicles designed to address traffic congestion, improve highway mobility and provide high fuel economy. Results from a prototype narrow vehicle developed at the University of Minnesota with embedded estimation algorithms and estimation-based automatic tilt control are presented.

Biography

Rajesh Rajamani obtained his M.S. and Ph.D. degrees from the University of California at Berkeley and his B.Tech degree from the Indian Institute of Technology at Madras. He joined the faculty in Mechanical Engineering at the University of Minnesota in 1998 where he is currently the Benjamin Y.H. Liu-TSI Endowed Chair Professor. His active research interests include sensing and estimation for autonomous vehicles and other smart systems.

Dr. Rajamani has co-authored over 140 journal papers and is a co-inventor on 13 patents/ patent applications. He is the author of the popular book “Vehicle Dynamics and Control” published by Springer Verlag. Dr. Rajamani is a Fellow of ASME and has been a recipient of the CAREER award from the National Science Foundation, the 2001 Outstanding Paper award from the journal IEEE Transactions on Control Systems Technology, the Ralph Teetor Award from SAE, and the 2007 O. Hugo Schuck Award from the American Automatic Control Council.

Several inventions from his laboratory have been commercialized through start-up ventures co-founded by industry executives. One of these companies, Innotronics, was recently recognized among the 35 Best University Start-Ups of 2016 in a competition conducted by the US National Council of Entrepreneurial Tech Transfer.


About Cyber Security in Discrete-Event Dynamic Systems: from Modelling and Analysis of Smart Attacks to Attack-Resilient Supervisory Control.

苏荣 教授

南洋理工大学,新加坡

Abstract

Considering the diversity of cyber attacks on discrete-event systems, in this talk I will focus on a special type called “smart attacks”, which, if exist, will not be detected by the supervisor until an unstoppable process with ensured damages takes place. An attack may be carried out in either an observation channel, or a command channel, or both simultaneously. After introducing some models of observation and command channel attacks, I will describe, from an attacker’s point of view, how to synthesise a smart attack strategy. Sufficient and necessary conditions will be given to ensure the existence of such a strategy. It turns out that the synthesis of an attack-resilient supervisor is more challenging, owing to not only high synthesis complexities, but also the unknown decidability nature of existence of such a supervisor in a general setup. Nevertheless, for a special observation-channel attack, where an attacker does not aim for assured damages, but rather some possibility of damages, captured by the concept of weak attackability, the existence of a resilient supervisor is decidable.

Biography

  苏荣博士 于1997年获得中 国科学技术大学的工程学士学位,并分别于2000年和2004年获得了加拿大多伦多大学的应用科学硕士学位和博士学位。在2010年加入南洋理工大学之前,他曾于加拿大滑铁卢大学和荷兰艾恩霍芬技术大学从事研究工作。目前,他是南洋理工大学电气与电子工程学院的副教授。苏荣博士的研究兴趣涵盖离散事件系统理论,包括监管控制,网络安全分析和基于模型的故障诊断,多智能体系统的共识控制,以及复杂网络系统的实时优化及其在智能制造,智能交通系统和绿色建筑中的应用。在上述领域,他已发表了72篇期刊文章和112篇国际会议文章,被授予2项美国/新加坡的专利,并且自2011年以来已获得超过1000万新元的研究经费用于智慧城市和智能制造相关的研究。苏博士是IEEE的高级会员,也是Automationa,离散事件动态系统理论与应用杂志以及控制与决策杂志的副编。他于2016年至2019年担任IEEE控制系统协会智慧城市技术委员会的主席,目前是新加坡IEEE控制系统分会的主席。


Control theory of switches and clocks.

Prof. Xin Xin

Okayama Prefectural Universiy, Japan

Abstract

Underactuation is a technical term used in robotics and control to describe mechanical devices that have a lower number of actuators than degrees of freedom. Walking robots, acrobatic robots, and flexible robots are the examples of underactuated robotic systems (URSs). The study of design and control for underactuated robotic systems is a fertile and challenge research area having fruitful interactions with robotics and control, and has attracted many researchers from these two communities.

This talk presents a unified treatment of control design and analysis for a class of URSs we studied theoretically and experimentally for more than a decade, which includes systems with multiple-degree-of-freedom and/or with underactuation degree two. This talk introduces some new notions, features, design techniques, strict motion analysis results, and the results of controllability and observability for these systems. Specifically, by studying the passivity of the systems and presenting new physical properties of the systems, we present a new concept of virtual composite links and present a global swing-up controller for multiple link planar underactuated robots based on such a concept. These new materials are shown to be vital in studying the control design and stability analysis of underactuated robotic systems. The theoretical developments are validated by experimental results for several systems. Finally, we introduce some future research topics for underactuated robotic systems.

Biography

Xin Xin received the B.S. degree in 1987 from University of Science and Technology of China, Hefei, China, and the Ph.D. degree in 1993 from Southeast University, Nanjing, China. From 1991 to 1993, he did his Ph.D. studies in Osaka University as a co-advised student of China and Japan with the Japanese Government Scholarship. He also received the Doctor degree in engineering in 2000 from Tokyo Institute of Technology. From 1993 to 1995, he was a postdoctoral researcher and then became an associate professor of Southeast University. From 1996 to 1997, he was with the New Energy and Industrial Technology Development (NEDO), Japan as an advanced industrial technology researcher. From 1997 to 2000, he was an assistant professor of Tokyo Institute of Technology. From 2000, he has been with Okayama Prefectural University (OPU) as an associate professor, where he is now a full professor since 2008. He was the assistant of the Dean of the faculty of Computer Science and Systems Engineering, the Chair of the Department of Systems Engineering, and the vice director of the international exchange center of OPU. He has about 210 publications in journals, international conferences and book chapters. He received the division best paper award of Society of Instrument and Control Engineering (SICE) Annual Conference on Control Systems in 2004. His current research interests include robotics, dynamics and control of nonlinear and complex systems. He is now associate editors of IEEE Control Systems Letters, Transactions of the Society of Instrument and Control Engineers.


建筑节能研究中的群智能决策框架初探

赵千川 教授,博士生导师

清华大学,中国

Abstract

     建筑能耗在社会总能耗中占有很大比重。采用技术手段实现建筑舒适安全和节能,是当前学术研究的热点问题之一。但经过我们调研发现,许多先进的节能运行策略很难落地。本报告对此进行分析,并结合我们承担的十三五重点研发项目,从构建具有工程适用性的新型建筑智能化系统的角度,讨论实现建筑系统智能决策的可能途径。我们会介绍一种基于群智能的信息物理融合系统(CPS)决策算法架构,并结合设备节能群控和传感器故障检测等典型应用,展示在该架构下,楼控机电设备实现即插即用的算法原理,以及楼控系统实现自组织分布式协作计算和节能优化决策的方案。

Biography

  赵千川 ,清华大学自动化系教授,博士生导师,智能与网络化系统研究中心主任,山东建筑大学兼职教授。担任中国自动化学会控制理论专业委员会委员、中国系统工程学会理事、IEEE RAS智能建筑专业委员会主任,IEEE 汇刊“IEEE Transactions on Control of Network Systems”和 “IEEE Transactions on Automation Science and Engineering”编委,《控制理论与应用》副主编等国内学术刊物职位。主要研究方向为网络化动态系统性能优化与安全控制及其在建筑、电力、制造、通信等领域的应用。曾获国家自然科奖二等奖(排名第二)、教育部自然科学二等奖(排名第一)。2014年获国家杰出青年科学基金资助。