CCDC 2026
15-18 May

Distinguished Lectures

Prof. Subhrakanti Dey, Uppsala University, Sweden

Prof. Ralph Kennel, Technische Universität München, Germany


Research on Decentralized Control Methods for Uncertain Nonlinear Interconnected Large-Scale Systems

Prof. Yongming Li

Liaoning University of Technology, China

Abstract

Practical engineering control systems, such as aerospace systems, robot systems, and chemical process systems, are increasingly exhibiting comprehensive characteristics such as high nonlinearity, large-scale, uncertainty, multi variability, and strong coupling. This poses a challenge to traditional centralized control theories and methods. Distributed control fundamentally solves the bottlenecks of large-scale complex systems in terms of information, computation, and reliability through local autonomy and limited coordination. Therefore, decentralized control of uncertain nonlinear interconnected large-scale systems has become one of the core control methods for dealing with modern complex engineering systems. This report focuses on the design method of decentralized controllers for typical uncertain nonlinear interconnected large-scale systems, as well as the proof of stability, convergence, and robustness of the control system.

Biography

Yongming Li , Professor, Doctoral Supervisor, Vice President of Liaoning University of Technology, expert enjoying the Special Government Allowance of the State Council, and recipient of Category A and B Projects of the Youth Science Fund of the National Natural Science Foundation of China, whose research direction is Theory and Application of Intelligent Control, has presided over more than 20 national and provincial-level projects including the Joint Key Project of the National Natural Science Foundation of China, projects under the National Key R&D Program, and Major Projects of the "Tendering for Talents to Solve Key Problems" of Liaoning Province, published more than 100 papers, been granted more than 20 invention patents and software copyrights, published 4 textbooks and monographs, and won the First Prize in Natural Science of the Ministry of Education, the Second Prize in Natural Science of Liaoning Province, as well as the First Prize in Technological Progress of the Chinese Association of Automation.


Prof. Tengfei Liu, Northeastern University, China

Prof. Girish Nair, The University of Melbourne, Australia


Prescribed Performance Control in Networked Control Systems: State-of-the-Art and Open Challenges

Prof. George Rovithakis

Aristotle University of Thessaloniki, Greece

Abstract

Networked Control Systems (NCSs) have become a fundamental architecture in modern control applications, where sensors, controllers, and actuators exchange information over shared communication networks. While this structure offers significant advantages in scalability, flexibility, and resource efficiency, it also introduces network-induced constraints and effects—such as delays, data losses, quantization, and asynchronous sampling—that can severely impair performance and threaten stability.
Outside the NCS framework, prescribed performance control (PPC) provides a powerful and conceptually elegant approach for enforcing user-defined transient and steady-state performance characteristics in a broad class of uncertain nonlinear systems. Its key strengths lie in the development of low-complexity, model-free, and robust controllers.
However, applying PPC within NCSs presents unique challenges due to the aforementioned network-induced effects, which can easily lead to internal instability. Addressing these challenges necessitates the development of robust PPC modifications tailored for networked environments.
How exactly can this be achieved? Join me for the lecture to find out.

Biography

George A. Rovithakis is currently a Professor and Director of the Automation and Robotics Laboratory in the Department of Electrical and Computer Engineering at Aristotle University of Thessaloniki. His research interests include nonlinear control, robust adaptive control, prescribed performance control, robot control, and control-identification of uncertain systems using neural networks. He has authored or co-authored three books and over 190 papers published in scientific journals, conference proceedings, and book chapters.
Professor Rovithakis is ranked among the top 2% of researchers worldwide by Stanford University, based on the impact of his published work. His research on trajectory-oriented prescribed performance guarantees—such as maximum overshoot, minimum convergence rate, and maximum steady-state error—in nonlinear closed-loop systems with uncertain dynamics led to the development of the Prescribed Performance Control (PPC) methodology.
He currently serves as an Associate Editor for the IEEE Transactions on Automatic Control and has previously served as an Associate Editor for the IEEE Transactions on Neural Networks and the IEEE Transactions on Control Systems Technology. Additionally, he has been a member of the IEEE Control Systems Society Conference Editorial Board and the European Control Association (EUCA) Conference Editorial Board. Dr. Rovithakis is a member of the Technical Chamber of Greece, an elected member of EUCA, and a former Chair of the IEEE Greece Section Control Systems Chapter.


Prof. Ying Tan, The University of Melbourne, Australia


Safety-Critical Control Under Disturbances: Foundation, Method and Robotic Application

Prof. Jun Yang

Loughborough University, UK

Abstract

Safety-critical control is significant for robotics and autonomous system (RAS) applications where safety is an utmost concern. Control barrier function (CBF)-based control has shown its promising potential and power in delivering formal safe property of RAS. The presence of disturbances has negative effects on CBF-based control, leading to formal safety guarantee violations and degraded control performance. In this lecture, we will introduce the background of safety-critical control, highlight the motivation why formal method is required, give a comprehensive tutorial on CBF-based control approaches, and elaborate the emerging methods on safety-critical disturbance rejection control and their applications to interactive robotics and autonomous cranes for port automation.

Biography

Jun Yang received the B.Sc. degree in automation from the Department of Automatic Control, Northeastern University, Shenyang, China, and the Ph.D. degree in control theory and control engineering from the School of Automation, Southeast University, Nanjing, China, in 2006 and 2011, respectively. He worked in School of Automation, Southeast University as Lecturer from 2011, Associate Professor from 2014, and Full Professor from 2018 all in Control Systems. Since 2020, he has been with the Department of Aeronautical and Automotive Engineering, Loughborough University, Loughborough, U.K., as a Senior Lecturer and is promoted to a Reader in 2023. He once held various academic visiting positions worldwide like Visiting Professor at Imperial College London (UK, 2019), Visiting Associate Professor at Nanyang Technological University (Singapore, 2016), and Visiting Research Fellows at RMIT University (Australia, 2015) and Western University of Sydney (Australia, 2013).
His research interests include disturbance observer, motion control, mechatronics, robotics, and automation. Dr. Yang was the recipient of the EPSRC New Investigator Award. He serves as an Associate Editor or Technical Editor for IEEE Transactions on Automatic Control, IEEE Transactions on Industrial Electronics, IEEE-ASME Transactions on Mechatronics, etc. He is the founding Editor-in-Chief of Advanced Mechatronics since 2026, and Deputy Editor-in-Chief of Drones and Autonomous Vehicles since 2024. He is a Fellow of IEEE, IET, and AAIA.


Design, Planning and Control of Specialized Rotary-Wing Unmanned Aerial Vehicles

Prof. Lixian Zhang

Harbin Institute of Technology, China

Abstract

Specialized robots are the robots designed for specific, complex, or extreme operational scenarios, exhibiting tailored functionalities. Unlike consumer-grade and industrial-grade UAVs, specialized rotary-wing UAVs possess unique configurations, payloads, and materials. By combining the inherent advantages of rotary-wing vehicles, including high maneuverability, spatial accessibility, and flexible deployment, these specialized rotary-wing UAVs play an irreplaceable role in missions including security reconnaissance, emergency rescue, and extreme environments operations. This talk will present the design and development work by the team leaded by the lecturer on the configuration, planning, and control of several classes of specialized rotary-wing UAVs: rotary-wing hybrid terrestrial-aerial vehicles, in-cabin flying robots for space stations, and etc. Also, this talk will conclude with a perspective on the future development trends of such specialized UAVs.

Biography

Prof.Lixian Zhang received the Ph.D. degree in control science and engineering from the Harbin Institute of Technology (HIT), Harbin, China, in 2006. From January 2007 to September 2008, he was a Postdoctoral Fellow in the Department of Mechanical Engineering at the Ecole Polytechnique de Montreal, Canada. He was a Visiting Professor at the Process Systems Engineering Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA, from February 2012 to March 2013. Since January 2009, he has been with the Harbin Institute of Technology, where he is currently a Full Professor and the Vice Dean of the Institute for Artificial Intelligence.
Prof. Zhang’s research interests include advanced/intelligent control theory and applications in specialized robots and spacecraft. He has co-authored over 200 high-impact papers in journals including Automatica, IEEE TAC/TAES/RAL, and AIAA JGCD. His research works have been awarded with 2023 IEEE RAL Best Paper Award, and recognized as One of 100 Most Influential Papers at China in 2013. He has led over 30 scientific research projects, and developed a series of robotic platforms that applied in national major in- orbit engineering missions; reported by CCTV’s News Broadcast, Live News, and other CCTV programs.
Prof. Zhang currently serves as Senior Editor for IEEE Control Systems Letters, and previously served as Associate Editor for IEEE Transactions on Automatic Control and IEEE Transactions on Cybernetics. He is a winner of the National Science Fund for Distinguished Young Scholars, and has been honored with “Qian Xuesen Outstanding Contribution Award”. He received the awards of “National Natural Science Award” (second class) and “Heilongjiang Natural Science Award” (first class, two times). He has been listed as a Clarivate Analytics Highly Cited Researcher from 2014 to 2023. He is a Fellow of IEEE and IET.


Prof. Yanlong Zhao, Academy of Mathematics and Systems Science, CAS, China


More Distinguished Lectures are to be confirmed.